×

多分类器融合行为识别模型

消耗积分:1 | 格式:rar | 大小:0.76 MB | 2017-12-08

分享资料个

  为了提高基于智能移动设备的人体日常行为识别准确率,提出一种高可信度加权的多分类器融合行为识别模型( MCFM)。针对不同智能设备内置加速度传感器获取的三轴加速度信息,优选出与人体行为相关度高的特征集作为该模型的输入,将决策树、支持向量机以及反向传播(BP)神经网络三个基分类器通过高可信度加权投票算( HRWV)法训练出一个新的融合分类器。实验结果表明,所提出的分类器融合模型能有效提高行为识别的准确率,对静止、散步、跑步、上楼及下楼五种日常行为的平均识别准确率达到94. 88%。

多分类器融合行为识别模型

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !