云计算和移动互联网的不断融合,促进了移动云计算的产生与发展,在移动云计算环境下,用户可将工作流的任务迁移到云端执行。这样不但能够提升移动设备的计算能力,而且可以减少电池能源消耗.但是不合理的任务迁移会引起大量的数据传输。这不仅损害工作流的服务质量。而且会增加移动设备的能耗.基于此,本文提出了基于延时传输机制的多目标工作流调度算法MOWS-DTM.该算法基于遗传算法,结合工作流的调度过程。在编码策略中考虑了工作流任务的调度位置和执行排序.由于用户在不断移动的过程中,移动设备的无线网络信号也在不断变化.当传输一定大小的数据时,网络信号越强则需要的时间越少,从而移动设备的能耗也越少.而且工作流结构中存在许多非关键任务,延长非关键任务的执行时间并不会对工作流的完工时间造成影响.因此。本文在工作流调度过程中融入了延时传输机制DTM。该机制能够同时有效地优化移动设备的能耗和工作流的完工时间,仿真结果表明。相比MOHEFT算法和RANDOM算法。MOWS-DTM算法在多目标性能上更优.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !