×

一种分步动态自回归KPCA算法

消耗积分:1 | 格式:rar | 大小:0.79 MB | 2017-12-19

分享资料个

  针对滑动窗自适应核主元分析法KPCA)在处理参数敏感和缓慢劣化问题时存在的“过适应”现象,容易产生漏报的问题,提出了一种分步动态自回归KPCA算法。首先,借鉴动态数据矩阵思想,分步建立初始模型;然后,在滑动窗自适应KPCA的基础上,引入指数加权法则处理实时数据、更新模型;最后,分析算法复杂度,并给出具体实现步骤。利用模拟数据分析分解系数和加权因子对算法的影响,结果表明,与滑动窗自适应KPCA相比,所提方法在参数选择恰当的情况下,模型效率提高了近90%,误报次数几乎降为0,还能通过调整加权因子取值来控制算法的适应能力,以解决多样化的动态问题。将算法应用于压缩机喘振和轴承故障实验数据分析,验证了所提算法处理参数敏感和缓慢劣化问题的能力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !