×

基于信息浓缩的隐私保护分类方法

消耗积分:1 | 格式:rar | 大小:0.84 MB | 2017-12-23

分享资料个

  支持向量机(SVM)的分类决策过程涉及到对原始训练样本的学习,容易导致数据中隐私信息的泄漏。为解决上述问题,提出一种基于信息浓缩的隐私保护分类方法IC-SVM。该算法首先根据样本的邻域信息,通过模糊C均值( FCM)聚类算法进行聚类分析;接着,使用信息浓缩准则对聚类中心进行处理,得到浓缩点组成的新样本;最后,使用新样本进行训练并得到决策函数,并用它去进行分类测试,可以较好地保护数据的隐私。在UCI真实数据和PIE人脸数据上的实验结果表明,IC-SVM方法既能保护数据信息的安全,又有较高的分类准确率。
基于信息浓缩的隐私保护分类方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !