×

无监督行为特征提取算法

消耗积分:1 | 格式:rar | 大小:1.28 MB | 2017-12-26

分享资料个

  针对现有行为特征提取方法识别率低的问题,提出了一种融合稠密光流轨迹和稀疏编码框架的无监督行为特征提取方法( DOF-SC)。首先,在稠密光流(DOF)轨迹提取的基础上,对以轨迹为中心的原始图像块进行采样作为轨迹的原始特征;其次,对轨迹原始特征基于稀疏编码框架训练稀疏字典,得到轨迹的稀疏特征表示,利用词袋(BF)模型对稀疏特征聚类得到轨迹的码书,再根据码书对每个动作中出现的所有轨迹所属的码书类别进行投票,统计该动作中每个码书出现的次数,得到行为特征;最后,对行为特征利用基于直方图交叉核函数的支持向量机( SVM)进行训练得到行为识别模型,再利用该模型对行为进行分类预测,得到最终行为识别的结果。在对轨迹采样10%的情况下,DOF-SC算法得到的行为识别准确率在KTH数据库上高出采用运动边界直方图(MBH)作为特征的行为识别准确率的0. 9%,在YouTube数据库上高出MBH作为特征的行为识别准确率的1.2%。实验数据表明了所提方法对行为识别的有效性。

无监督行为特征提取算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !