×

适用于图书推荐的数据挖掘模型

消耗积分:1 | 格式:rar | 大小:0.74 MB | 2018-01-04

分享资料个

  针对传统推荐算法精准度不高的问题,在潜在狄利克雷分布( LDA)主题挖掘模型的基础上提出了一种新的适用于图书推荐(BR)的数据挖掘模型-BR_LDA模型。通过对目标借阅者的历史借阅数据与其他图书数据进行内容相似度分析,得到与目标借阅者历史借阅图书内容相似度较高的其他图书。通过对目标借阅者的历史借阅数据及其他借阅者的历史借阅数据进行相似性分析,得到最近邻借阅者的历史借阅数据。通过求解图书被推荐的概率,最终得到目标借阅者潜在感兴趣的图书。特别地,当推荐数量为4000时,BR_LDA模型比基于多特征方法和关联规则方法精准度分别提高了6. 2%、4.5%;当推荐数量为500时,BR_LDA模型比协同过滤的近邻方法和矩阵分解方法分别提高了2. 1%、0.5%。实验表明本模型能够更准确地向目标借阅者推荐历史感兴趣类别的新图书及潜在感兴趣的新类别的图书。

适用于图书推荐的数据挖掘模型

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !