针对单一评判准则较难适应复杂环境下的目标跟踪问题,提出了一种基于双评判准则自适应融合的跟踪算法。在该算法中,空间直方图被用作目标表示模型,候选目标与目标模板之间的相似度、以及候选目标与其邻近背景区域之间的对比度被作为目标评判双准则,而目标函数(或似然函数)则由两个准则的加权融合而成。算法是在粒子滤波框架下实现的目标搜索,并采用了模糊逻辑对相似度和对比度的权值进行自适应调节。对人、动物等多个挑战性运动目标的跟踪结果表明,与增量学习跟踪、L,跟踪等最新跟踪器相比,所提算法在处理目标的遮挡、形变、旋转以及表观变化方面的综合性能更好,其成功率和平均重叠率指标分别在80%和0.76以上。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !