针对传统的局部特征描述子在图像匹配效果和效率上很难兼顾的问题,提出了一种基于梯度角度的直方图( HGA)的图像匹配算法。该算法先通过加速片段测试特征(FAST)获取的图像关键点,然后采用块梯度计算和飞镖靶型结构对局部区域的结构特征进行描述。HGA有效地实现了在旋转、模糊、亮度等多种变换下的良好匹配性能,并在一定程度上具备抗仿射变换的能力。在各种复杂场景下,与高速鲁棒描述子( SURF)、尺度不变特征转换(SIFT)和FAST定向的抗旋转二进制鲁棒独立基元特征( BRIEF)描述予(ORB)进行的实验对比表明基于梯度角度的直方图局部特征描述子达到了匹配效果和效率的均衡,算法时间约为SIFT的1/3,点对匹配准确率均在94. 5%以上。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !