提出了一种基于压缩感知(CS) 的说话人识别算法以及在ARM 系统中的实现,首先,介绍压缩感知理论框架,提出说话人识别可以与压缩感知理论相结合的依据;其次,提出基于压缩感知的说话人识别算法的基本方法,即建立说话人语音特征数据库和基追踪匹配得到最大均值系数,其中,语音特征向量由GMM 均值超向量核算法得到,大量实验数据表明,该方法定程度上提高了识别率,并且在说话人集合较大的情况下识别效果较好。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !