传统情感分析方法仅考虑单一文本,对长度短小且口语化严重的微博文本情感极性识别率较低。针对上述问题,提出一种结合上下文消息的情感分析方法。将微博情感分析问题看做标签序列学习任务,使用隐马尔可夫支持向量机把微博上下文语境融入微博情感分析问题中。实验结果表明,该方法较之于基于朴素贝叶斯或支持向量机的微博情感分析模型可以更好地分析微博情感极性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !