不同类别的祥本严 重重疊在分类边界时,由于聚类假设不能很好地反映出数据的真实分布,基于聚类假设的半监督分类方法的性能,可能比与之对立的监督分类方法更差。针对上述不安全的半监督分类问题,提出了调整聚类假设联合成对约束半监督分类方法( ACA-JPC-S3VM)。一方面,它将单个未标记样本到数据分布边界的距离融入到模型的学习中,能够一定程度上缓解此类情况下算法性能的下降程度;另一方面,它将成对约束信息引入,弥补了模型对监督信息利用方面的不足。在UCI数据集上的实验结果表明,ACA-JPC-S3VM方法的性能绝不会低于支持向量机(SVM),且在标记样本数量为10时的平均准确率较SVM高出5个百分点;在图像分类数据集。上的实验结果表明,直推式支持向量机(TSVM)等半监督分类方法出现了不同程度的不安全学习情形(即性能相近或低于SVM),而ACA-JPC-S3VM却能安全地学习。因此,ACA-JPC-S3VM具有更好的安全性与正确性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !