×

基于支持向量机的电力短期负荷预测

消耗积分:3 | 格式:rar | 大小:748 | 2010-12-30

赵辉

分享资料个

以城市电力负荷预测为应用背景,根据电力负荷的特点和支持向量机(SVM)方法在解决小样本学习问题中的优势,提出基于SVM的电力短期负荷预测模型,并使用粒子群优化算法优化其参数。基于SVM的电力短期负荷预测模型的运行结果与BP神经网络模型对比表明,前者稳定性好,运行速度快,准确率高。
Abstract:
 SVM is based on the principle of structure risk minimization as opposed to the principle of Empirical Risk Minimization supported by conventional regression techniques.For the characteristics of the short-term load forecasting and the advantages of support vector machine(SVM)in solving the learning problem with fewer samples,a short-term load forecasting model based on SVM is presented,in which the parameters in SVM are optimized by particle swarm optimizer(PSO).Results comparison between the proposed model and the BP neural networks model show that the short term load forecasting model based on SVM has a better stability,faster running speed and high forecasting precision.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !