×

同轴电缆温度稳相材料的发展有什么样的进展

消耗积分:1 | 格式:pdf | 大小:0.54 MB | 2020-07-07

欲望都市

分享资料个

  PTFE(杜邦特氟龙)作为传输电缆的介质材料已经有几十年的历史。在室温条件下,PTFE会发生状态改变,使其体积产生阶跃突变,以及相对介电常数的变化,并呈现电长度变化的“滞后”效应。这些电长度的变化很难通过系统软件或其他途径进行可靠预测和计量,从而导致系统性能的衰减。有机和无机介质材料的发展,为一些基本性能指标带来巨大改进。

  本文将比较几个技术: • 温度变化导致的相位变化关系 • 多组电缆间电长度的跟踪性能和温度变化之间的关系 • 多组电缆间在环境温度改变时的电长度跟踪性能 • 多次温度循环后电长度的重复性能

  此外,导体结构与介质之间的振动和相互作用产生的寄生相位噪声,及相关的电长度参数,将在下文讨论。

  Oliver Heaviside注意到,将一根电话线用绝缘体包裹,会提高信号质量及有效通信距离。1880年他申请了世界上第一根同轴电缆的专利。1929年美国电话电报公司贝尔电话实验室的工程师申请了第一根现代同轴电缆的专利。以今天的标准来看,它由两根同轴金属管构成,以空气做隔离,显得比较粗糙。 19世纪30年代杜仲橡胶(一种天然橡胶) 是早期柔性同轴电缆的主要介质选择。第二次世界大战期间,聚乙烯成为主要的绝缘介质材料。19世纪50年代开发出“发泡”工艺,减少了电缆电容及损耗。60年代固体全密度聚四氟乙烯(PTFE)或Teflon被广泛使用。其拥有更高的温度范围,更低的损耗因数,更低的介电常数及在更宽的温度和频率范围下的性能一致性,使之成为理想的同轴电缆介质。 70年代与80年代,制造商开始使用拉伸扩展型的低密度版本的PTFE,进一步达到了较理想的性能指标。 90年代对电长度稳定性需求的增加,使制造商开始使用超低密度PTFE介质。这些产品的确有了显著的改善,但仍有一些内在局限性。其中最主要的限制是相位对温度的“拐点”问题:由于PTFE分子的基本材料特性而导致的电长度阶跃变化。这种效应可以最小化,但不可能消除。 2004年同轴电缆产品使用TF4技术以解决该问题。 2015年进一步优化和改进工艺,发展了更新的TF4技术,对比PTFE介电材料,其在相位敏感的应用中拥有非常明显的优势。

  二、性能指标

  理想的微波电缆组件应具有零损耗,零能量反射,及零电长度变化。这些理想的属性应在系统部件所处的任何环境条件下保持不变。在实际应用中我们要努力实现这些理想的属性。但实际上同轴电缆组件电长度的变化确实与其所在的环境温度变化有关。 A、相位变化和温度变化之间的关系众所周知,用于构成同轴电缆组件的金属具有正向的扩张温度系数。电长度与物理长度是直接相关的。很明显,温度升高,物理长度会增加,电长度也会随之增加。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !