借助15.8 节中实现的 BERT 模型和15.9 节中从 WikiText-2 数据集生成的预训练示例 ,我们将在本节中在 WikiText-2 数据集上预训练 BERT。
首先,我们将 WikiText-2 数据集加载为用于屏蔽语言建模和下一句预测的小批量预训练示例。批量大小为 512,BERT 输入序列的最大长度为 64。请注意,在原始 BERT 模型中,最大长度为 512。
15.10.1。预训练 BERT
原始 BERT 有两个不同模型大小的版本 (Devlin et al. , 2018)。基础模型(BERTBASE) 使用 12 层(Transformer 编码器块),具有 768 个隐藏单元(隐藏大小)和 12 个自注意力头。大模型(BERTLARGE) 使用 24 层,有 1024 个隐藏单元和 16 个自注意力头。值得注意的是,前者有 1.1 亿个参数,而后者有 3.4 亿个参数。为了便于演示,我们定义了一个小型 BERT,使用 2 层、128 个隐藏单元和 2 个自注意力头。
在定义训练循环之前,我们定义了一个辅助函数 _get_batch_loss_bert
。给定训练示例的碎片,此函数计算掩码语言建模和下一句预测任务的损失。请注意,BERT 预训练的最终损失只是掩码语言建模损失和下一句预测损失的总和。
#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X,
segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y):
# Forward pass
_, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X,
valid_lens_x.reshape(-1),
pred_positions_X)
# Compute masked language model loss
mlm_l = loss(mlm_Y_hat.reshape(-1, vocab_size), mlm_Y.reshape(-1)) *\
mlm_weights_X.reshape(-1, 1)
mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
# Compute next sentence prediction loss
nsp_l = loss(nsp_Y_hat, nsp_y)
l = mlm_l + nsp_l
return mlm_l, nsp_l, l
#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X_shards,
segments_X_shards, valid_lens_x_shards,
pred_positions_X_shards, mlm_weights_X_shards,
mlm_Y_shards, nsp_y_shards):
mlm_ls, nsp_ls, ls = [], [], []
for (tokens_X_shard, segments_X_shard, valid_lens_x_shard,
pred_positions_X_shard, mlm_weights_X_shard, mlm_Y_shard,
nsp_y_shard) in zip(
tokens_X_shards, segments_X_shards, valid_lens_x_shards,
pred_positions_X_shards, mlm_weights_X_shards, mlm_Y_shards,
nsp_y_shards):
# Forward pass
_, mlm_Y_hat, nsp_Y_hat = net(
tokens_X_shard, segments_X_shard, valid_lens_x_shard.reshape(-1),
pred_positions_X_shard)
# Compute masked language model loss
mlm_l = loss(
mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y_shard.reshape(-1),
mlm_weights_X_shard.reshape((-1, 1)))
mlm_l = mlm_l.sum() / (mlm_weights_X_shard.sum() + 1e-8)
# Compute next sentence prediction loss
nsp_l = loss(nsp_Y_hat, nsp_y_shard)
nsp_l = nsp_l.mean()
mlm_ls.append(mlm_l)
nsp_ls.append(nsp_l)
ls.append(mlm_l + nsp_l)
npx.waitall()
return mlm_ls, nsp_ls, ls
调用上述两个辅助函数,以下 函数定义了在 WikiText-2 ( ) 数据集上train_bert
预训练 BERT ( ) 的过程。训练 BERT 可能需要很长时间。与在函数中指定训练的时期数不同 (参见第 14.1 节),以下函数的输入指定训练的迭代步数。net
train_iter
train_ch13
num_steps
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
net(*next(iter(train_iter))[:4])
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
trainer = torch.optim.Adam(net.parameters(), lr=0.01)
step, timer = 0, d2l.Timer()
animator = d2l.Animator(xlabel='step', ylabel='loss',
xlim=[1, num_steps], legend=['mlm', 'nsp'])
# Sum of masked language modeling losses, sum of next sentence prediction
# losses, no. of sentence pairs, count
metric = d2l.Accumulator(4)
num_steps_reached = False
while step < num_steps and not num_steps_reached:
for tokens_X, segments_X, valid_lens_x, pred_positions_X,\
mlm_weights_X, mlm_Y, nsp_y in train_iter:
tokens_X = tokens_X.to(devices[0])
segments_X = segments_X.to(devices[0])
valid_lens_x = valid_lens_x.to(devices[0])
pred_positions_X = pred_positions_X.to(devices[0])
mlm_weights_X = mlm_weights_X.to(devices[0])
mlm_Y, nsp_y = mlm_Y.to(devices[0]), nsp_y.to(devices[0])
trainer.zero_grad()
timer.start()
mlm_l, nsp_l, l = _get_batch_loss_bert(
net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
l.backward()
trainer.step()
metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
timer.stop()
animator.add(step + 1,
(metric[0] / metric[3], metric[1] / metric[3]))
step += 1
if step == num_steps:
num_steps_reached = True
break
print(f'MLM loss {metric[0] / metric[3]:.3f}, '
f'NSP loss {metric[1] / metric[3]:.3f}')
print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
f'{str(devices)}')
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': 0.01})
step, timer = 0, d2l.Timer()
animator = d2l.Animator(xlabel='step', ylabel='loss',
xlim=[1, num_steps], legend=['mlm', 'nsp'])
# Sum of masked language modeling losses, sum of next sentence prediction
# losses, no. of sentence pairs, count
metric = d2l.