提出了一种基于BP神经网络的浮选机液位稳定及液泡厚度的预测模型。预测模型主要以搅拌槽输出的矿浆流量,扫选输入流量,精选尾矿流量等为输入量,以液泡厚度为输出量,网络隐含层单元个数与中心向量采用正交最小二乘法(OLS)。同时,在此基础上在通过Matlab软件来分析液泡厚度情况,并给出了预测及预警信息。从仿真的结果来看,符合预期的效果,对预防液位变化过大和保证液位稳定具有较大的参考价值和现实意义。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉