提出了基于Dempster - Shafer 理论进行多个神经网络分类器组合的一种可行算法, 该算法考虑了每个分类器对不同类的识别能力不同这一经验知识. 在UCI 数据库的分类和一个多传感器融合工件识别系统中的应用结果, 表明了该算法的有效性. 关键词: Dempster - Shafer 理论; 神经网络; 分类器; 算法; 传感器 Abstract : A practical algorithm to combine the neural networks classifiers based on Dempster - Shafer theory is proposed. The influence of the fact that every classifier has different classification ability for different class is considered. Several databases of UCI repository and a multiple sensor fusion system for workpiece identification are tested , showing the validity of the algorithm. Keywords : Dempster - Shafer theory ; neural network ; classifiers ; algorithm; sensor