针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具有不同稀疏度的图像特征进行了融合,从而增强了算法的聚类性能和有效性。在Yale-32和COIL20数据集上进行的对比实验进一步验证了该算法具有更好的聚类精度和稀疏性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !