针对移动服务推荐中用户上下文环境复杂多变和数据稀疏性问题,提出一种基于移动用户上下文相似度的张量分解推荐算法-UCS-TF。该算法组合用户间的多维上下文相似度和上下文相似可信度,建立用户上下文相似度模型,再对目标用户的K个邻居用户建立移动用户一上下文一移动服务三维张量分解模型,获得目标用户的移动服务预测值,生成移动推荐。实验结果显示,与余弦相似性方法、Pearson相关系数方法和Cosinel改进相似度模型相比,所提UCS-TF算法表现最优时的平均绝对误差(MAE)分别减少了II. l%、10. l%和3.2%;其P@N指标大幅提升,均优于上述方法。另外,对比Cosinel算法、CARS2算法和TF算法,UCS-TF算法在数据稀疏密度为5%、20%、50%、80%上的预测误差最小。实验结果表明UCS-TF算法具有更好的推荐效果,同时将用户上下文相似度与张量分解模型结合,能有效缓解评分稀疏性的影响。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !