×

基于改进信息增益建立视觉词典的人体动作识别

消耗积分:0 | 格式:rar | 大小:0.80 MB | 2017-11-29

分享资料个

  针对词袋( BoW)模型方法基于信息增益的视觉词典建立方法未考虑词频对动作识别的影响,为提高动作识别准确率,提出了基于改进信息增益建立视觉词典的方法。首先,基于3D Harris提取人体动作视频时空兴趣点并利用K均值聚类建立初始视觉词典;然后引入类内词频集中度和类间词频分散度改进信息增益,计算初始词典中词汇的改进信息增益,选择改进信息增益大的视觉词汇建立新的视觉词典;最后基于支持向量机( SVM)采用改进信息增益建立的视觉词典进行人体动作识别。采用KTH和Weizmann人体动作数据库进行实验验证。相比传统信息增益,两个数据库利用改进信息增益建立的视觉词典动作识别准确率分别提高了1. 67%和3.45%。实验结果表明,提出的基于改进信息增益的视觉词典建立方法能够选择动作识别能力强的视觉词汇,提高动作识别准确率。

基于改进信息增益建立视觉词典的人体动作识别

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !