为提升人体姿态估计在移动终端设备上的运行速度与实时性,提出一种改进的人体关键点检测算法。通过将 Mobilenetv2轻量级主干网络与深度可分离卷积模块相结合加速特征提取过程,使用精炼网络进行多尺度人体关键点预测,并利用融合网络整合多个尺度的预测结果得到最终人体关键点检测结果。实验结果表明,与传统CPM算法相比,该算法在网络模型参数量和浮点运算量明显减少的情况下PCKh@05仅下降01个百分点,具有较高的检测精度和较好的实时性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !