针对基本粒子群优化(PSO)算法收敛精度低、容易陷入局部最优的问题,提出了一个结合质心思想和柯西变异策略的粒子群优化算法。首先,在粒子的初始化阶段采用混沌初始化策略,以提高初始粒子的均匀分布能力;其次,为了提高粒子群的收敛速度和寻优能力,引入了质心的概念,通过计算获得种群中所有粒子所构成的全局质心和所有个体极值构成的个体质心,使得粒子群内部可以实现充分的信息共享;为避免粒子陷入局部最优解,在粒子群算法中引入了柯西变异运算对当前最优粒子进行扰动,并依据柯西变异运算的规律,适应性地调整扰动步长,该算法以群体多样性为依据,动态调整惯性权重;最后,使用7个经典的测试函数对算法进行验证,通过函数运行结果的均值、方差和最小值能够表明,新算法在收敛精度上有较好的优越性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !