为了改善发声力度对说话人识别系统性能的影响,在训练语音存在少量耳语、高喊语音数据的前提下,提出了使用最大后验概率(MAP)和约束最大似然线性回归(CMLLR)相结合的方法来更新说话人模型、投影转换说话人特征。其中,MAP自适应方法用于对正常语音训练的说话人模型进行更新,而CMLLR特征空间投影方法则用来投影转换耳语、高喊测试语音的特征,从而改善训练语音与测试语音的失配问题。实验结果显示,采用MAP+ CMLLR方法时,说话人识别系统等错误率(EER)明显降低,与基线系统、最大后验概率(MAP)自适应方法、最大似然线性回归( MLLR)模型投影方法和约束最大似然线性回归(CMLLR)特征空间投影方法相比,MAP+ CMLLR方法的平均等错率分别降低了75. 3%、3.5%、72%和70. g%。实验结果表明,所提出方法削弱了发声力度对说话人区分性的影响,使说话人识别系统对于发声力度变化更加鲁棒。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !