为提高协同过滤推荐方法的准确性和有效性,提出一种基于改进型启发式相似度模型的协同过滤推荐方法PSJ。该方法考虑了用户评分差值、用户全局评分偏好和用户共同评分物品数三个因素。PSJ方法的Proximity因子使用指数函数反映用户评分差值对用户相似度的影响,这样也可避免零除问题;将NHSM方法中的Significance因子和URP因子合并成PSJ方法的Significance因子,这使得PSJ方法的计算复杂度低于NHSM方法;而且为了提高在数据稀疏情况下的推荐效果,PSJ方法同时考虑了用户间的评分差值和用户全局评分两个因素。实验采用Top-k推荐中的查准率和查全率作为衡量标准。实验结果表明,当推荐物品数大于20时,与NHSM、杰卡尔德算法、自适应余弦相似度( ACOS)算法、杰卡尔德均方差(JMSD)算法和皮尔逊相关系数算法(SPCC)相比,PSJ方法的查准率与查全率均有提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !