时空上下文跟踪算法充分的利用空间上下文中包含的结构信息能够有效的对目标进行跟踪,实时性优良.但是该算法仅仅利用单一的灰度信息,使得目标的表观表达缺乏判别性,而且该方法在由于遮挡等问题造成的跟踪漂移后无法进行初始化.针对时空上下文算法存在的弱点。本文提出了一个基于低秩重检测的多特征时空上下文跟踪方法.首先利用多特征对时空上下文进行多方面的提取。构建复合时空上下文信息。充分利用目标周围的特征信息,提高目标表观表达的有效性.其次利用简单有效的矩阵分解方式将跟踪到的历史跟踪信息进行低秩表达,将其引入有效的在线重检测器中来保持跟踪结构的一致稳定性,解决了跟踪方法在跟踪失败后的重定位问题,在一系列跟踪数据集上的实验结果表明本算法比原始算法及当前的主流算法相比有更好的跟踪精度与鲁棒性,且满足实时性要求.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !