×

基于稀疏表示的生成式算法

消耗积分:2 | 格式:rar | 大小:0.95 MB | 2017-12-28

分享资料个

  针对视频目标鲁棒跟踪问题,提出了一种基于稀疏表示的生成式算法。首先提取特征构建目标和背景模板,并利用随机抽样获得足够多的候选目标状态;然后利用多任务反向稀疏表示算法得到稀疏系数矢量构造相似度测量图,这里引入了增广拉格朗日乘子(ALM)算法解决Li -min难题;最后从相似度图中使用加性池运算提取判别信息选择与目标模板相似度最高并与背景模板相似度最小的候选目标状态作为跟踪结果,该算法是在贝叶斯滤波框架下实现的。为了适应跟踪过程中目标外观由于光照变化、遮挡、复杂背景以及运动模糊等场景引起的变化,制定了简单却有效的更新机制,对目标和背景模板进行更新。对仿真结果的定性和定量评估均表明与其他跟踪算法相比,所提算法的跟踪准确性和稳定性有了一定的提高,能有效地解决光照和尺度变化、遮挡、复杂背景等场景的跟踪难题。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !