针对现有的故障预测技术无法从整体上反映系统性能下降趋势等问题,提出一种基于健康度分析的故障预测方法。首先,在支持向量机回归算法基础上构造多输出支持向量机,以实现健康度的多步预测,并提出一种和声蚁群算法优化支持向量机参数,解决了蚁群算法易陷入局部最优的问题;然后,根据最优参数建立拟合监测数据和未来健康度下降过程非线性映射关系的和声蚁群算法一支持向量机( HSACA-SVM)故障预测模型;最后,通过某装备电源系统监测数据验证了该模型的有效性。实例验证表明该模型能够较好地实现对健康度下降趋势的预测,预测准确率达到97%,进而实现故障预测。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !