数据的指数级增长给数据管理和分析带来了严峻的挑战,连接查询是数据分析中一种常用运算,而MapReduce是一种用于大规模数据集并行处理的编程模型,研究基于MapReduce的连接查询代价评估和查询优化,有着学术意义和应用价值.MapReduce连接查询算法的性能主要取决于I/O代价(包括本地和网络I/O),而I/O代价与数据集以及连接运算的特征参数相关,通过对二元连接的I/O代价评估可以优化多元连接执行计划.基于此,首先提出了二元连接查询的I/O代价模型;随后,对现有二元连接算法进行形式化定义和简单扩展,归纳出6种基于MapReduce连接查询算法,并通过算法白盒分析定义它们的I/O代价函数;最后,提出一种多元连接最优执行计划的选择算法,通过实验表明I/O代价模型的正确性且能够准确地反映算法的性能优劣.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !