针对现有局部放电( PD)信号特征提取方法存在的不足,提出一种基于变分模态分解(VMD)和Hilbert变换(Hilbert-VMD)的特征提取方法,并提出一种双阈值筛选法来确定VMD算法中的分解模态数。首先,根据PD信号功率谱,采用双阈值筛选法确定VMD算法中的分解模态数;其次,采用VMD算法对PD信号进行分解,得到数个有限带宽的固有模态分量(BLIMFs);然后,对各模态分量进行Hilbert变换并线性叠加后得到PD信号的Hilbert时频谱,并计算各模态分量的边际谱;最后,根据各模态分量的边际谱提取PD信号频域内的特征量,并用支持向量机(SVM)对所提取的特征量进行分类。实验结果表明,对试验环境下和现场实测两种环境下的PD信号,采用该文方法提取得到的特征量均具有较高的正确识别率,充分说明该特征提取方法可以有效提取PD信号特征。对于噪声较大的实测信号,采用该方法得到的正确识别率并未明显降低,说明该方法具有较好的噪声鲁棒性。此外,该文所提Hilbert-VMD方法也为PD信号提供了一种新的时频分析方法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !