深度神经网络在目标检测领域具有优异的检测性能,但其结构复杂、计算量大,难以在嵌入式设备上进行髙性能的实时目标检测。针对该问题,提出一种基于 YOLOV3的目标检测算法。采用半精度推理策略提高YOLO算法的推理速度,并通过视频运动自适应推理策略充分利用前后帧视频之间目标的关联性,降低深度学习算法的运行频率,进一步提高目标检测速度。在 ILSVRC数据集上的实验结果表明,该算法可以在 NVIDIA TX2嵌入式平上实现28 frame/s的视频目标检测,且检测精度与原始的YOLO3算法相当。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !