×

K子空间和时延自相关器的英汉音素识别

消耗积分:3 | 格式:rar | 大小:217 | 2009-05-16

分享资料个

提出了用于音素识别的K子空间和时延自相关器神经网络结构,用将时延设计加入线性自相关器,以扩展音素滤波神经网络的方法,产生p维子空间,并采用迭代过程修改划分,以便捕获语音信号中的时间序列信息。这种带不分类训练过程的体系结构提供了一种高识别性能的方法,没有大多数常规语音识别神经网络所常有的网络输出值不表示候选者似然性的缺陷。通过英语音素和汉语音素的初步试验,识别正确率为84.38%,比音素滤波神经网络方法好。

A neural network architecture, K-subspaces and time-delay auto-associators, is proposed for phoneme recognition. It extends the phoneme filter neural networks approach by adding linear auto-associators to create p-dimension subspace, and an iteration is employed to improve the decision. It is good to capture the time-sequence information in speech signal. The architecture proposed could provide a high recognition performance without traditional neural network’s shortcoming. Some recognition simulations for both English and Chinese phonemes are conducted, and the recognition rate is 84.38% which is better than phoneme filter neural networks approach.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !