针对批次过程非线性、多模态等特征,提出一种基于判别核主元K近邻(Dis-kPCkNN)的故障检测方法。首先,在核主元分析( kPCA)中,高斯核的窗宽参数依据样本类别标签在类内窗宽和类间窗宽中判别选取,使得核矩阵能有效提取数据的关联特征,保持数据的类别信息;其次,在核主元空间中引用K近邻规则代替传统的T2统计方法,后近邻规则可以有效处理主元空间非线性和多模态等特征的故障检测问题。数值模拟实例和半导体蚀刻工艺过程仿真实验表明:基于判别核主元K近邻方法可以有效地处理具有非线性和多模态结构特征的故障检测问题,提高计算的效率,减少内存的占用,并且故障检测率明显优于传统方法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !