×

混合粒子对优化算法在说话人识别中的应用

消耗积分:2 | 格式:rar | 大小:223 | 2009-11-17

分享资料个

在粒子群优化(Particle Swarm Optimization, PSO)和混合蛙跳算法(Shuffled Frog-Leaping Algorithm,SFLA)的基础上,该文提出了一种新的混合粒子对优化(Shuffled Particle-Pair Optimizer, SPPO)算法,应用于矢量量化的说话人识别。该算法将全局信息交换和局部深度搜索相结合寻求最佳的说话人码本。群体按适应值分为3个粒子对,每个粒子对由两个粒子构成,按先后顺序执行PSO 算法中的速度位置更新和LBG 算法以实现局部细
致搜索,间隔一定的迭代次数通过SFLA 混合策略实现粒子对间的信息交换,从而使群体向全局最优解靠近。实验结果表明,本算法始终稳定地取得显著优于LBG,FCM,FRLVQ-FVQ 和PSO 算法的说话人识别性能,较好地解决了初始码本影响的识别性能的问题,且在计算时间和收敛速度方面有相当的优势。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !