针对深层次分类中分类准确率低、处理速度慢等问题,提出一种待分类文本的候选类别搜索算法。首先,引入搜索、分类两阶段的处理思想,结合类别层次树的结构特点和类别间的相关联系等隐含的领域知识,进行了类别层次权重分析和特征项的动态更新,为类树层次结构的各个节点构建更具分类判断力的特征项集合;进而,采用深度优先搜索算法并结合设定阈值的剪枝策略缩小搜索范围,搜索得到待分类文本的最优候选类别;最后,在候选类别的基础上应用经典的K最近邻(KNN)分类算法和支持向量机(SVM)分类算法进行分类测试和对比分析。实验结果显示,所提算法的总体分类性能优于传统的分类算法,而且使平均Fi值较基于贪心策略的启发式搜索算法提高了6%左右。该算法显著提高了深层次文本分类的分类准确度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !