针对当前基于奇异值分解的线性最小均方误差( SVD-LMMSE)法信道估计误差相对较大的问题,提出了一种基于经验模态分解和奇异值分解( EMD-SVD)差分谱的离散小波变换(DWT)域线性最小均方误差(LMMSE)自适应信道估计算法。在对信号进行最小二乘(LS)信道估计及预滤波处理后,运用DW‘r对信号的高频系数进行阈值量化去噪处理;然后结合基于EMD-SVD差分谱的自适应算法,将强噪声小波系数中微弱的有效信号提取出来,并进行信号的重构;最后根据循环前缀(CP)内、外噪声方差的均值设置相应门限,对循环前缀以内的噪声进行再次处理,从而进一步降低噪声的影响。对算法的误码率(BER)和均方误差(MSE)性能进行实验仿真,实验结果表明:所提算法的整体性能明显优于经典的LS算法、传统的LMMSE算法和目前较为流行的SVD-LMMSE算法,能够较好地降低噪声的影响,并可有效提升信道估计的精确度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !