在基于视角加权的多视角聚类中,每个视角的权重取值对聚类结果的精度都有着重要的影V向。针对此问题,提出熵加权多视角核K-means( EWKKM)算法,通过给每个视角分配一个合理的权值来降低噪声视角或无关视角对多视角聚类的影V向,进而提高聚类的精度。EWKKM算法中,首先用核矩阵表示不同的视角,给每个视角分配一个权重;然后,利用信息熵计算出各个视角的熵权重;最后,按照定义的目标函数对各个视角的权重进行优化,使用核K-means进行多视角聚类。在UCI数据集及人工数据集进行实验,实验结果表明熵加权多视角核K-means算法能够为每个视角分配一个最优的权重值,聚类的精确度优于已有的聚类算法,具有更稳定的聚类结果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !