为了准确地检测出复杂网络的社团结构,提出一种基于信号自适应传递的社团发现方法。首先使信号在复杂网络上自适应地传递,从而获取网络中各节点对整个网络的影V向向量,然后把网络中节点的拓扑结构转化成代数向量空间上的几何关系,最后结合聚类特性发现网络中的社团结构。为获取更加合理的空间向量,提出最佳传递次数,缩小搜索空间,增强算法寻优能力。该算法在计算机生成网络、Zachary网络和美国大学生足球赛网络上进行实验测试,并与CN算法、谱聚类算法、极值优化算法和信号传递算法进行实验对比,社团划分的准确性和精确性均有所提高,证明该算法具有有效性和可行性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !