针对谱聚类算法在解决高维、大数据量的聚类问题时出现的效率不高和准确率明显下降的问题进行了研究,并在此研究基础上结合最优投影理论和Nystrom抽样提出了基于最优投影的半监督谱聚类算法(semi-su-pervised spectral clustering based on the optimal projection,SSOP)。该算法从高内聚低耦合的聚类目标出发,根据少量的监督信息计算类内以及类间离散度求得最优投影方向,从而区分各属性的重要程度,在此基础上使用了Nystrom抽样来降低特征分解时间复杂度以达到在提高聚类算法准确率的基础上提高算法的效率。实验结果表明,该方法能够有效地提高聚类的准确率和效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !