×

阈值分类器组合的多标签分类算法

消耗积分:1 | 格式:rar | 大小:0.76 MB | 2018-01-22

分享资料个

  针对目标可以同时属于多个类别的多标签分类问题,提出了一种基于浮动阈值分类器组合的多标签分类算法。首先,分析探讨了基于浮动阈值分类器的AdaBoost算法(AdaBoost. FT)的原理及错误率估计,证明了该算法能克服固定分段阈值分类器对分类边界附近点分类不稳定的缺点从而提高分类准确率;然后,采用二分类(BR)方法将该单标签学习算法应用于多标签分类问题,得到基于浮动阈值分类器组合的多标签分类方法,即多标签AdaBoost.FT。实验结果表明,所提算法的平均分类精度在Emotions数据集上比AdaBoost.MH、ML-kNN、RankSVM这3种算法分别提高约4%、8%、11%;在Scene、Yeast数据集上仅比RankSVM低约3%、1%。由实验分析可知,在不同类别标记之间基本没有关联关系或标签数目较少的数据集上,该算法均能得到较好的分类效果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !