×

使用单幅图像超分辨率算法解决SR资源不足和抗噪性差的问题说明

消耗积分:0 | 格式:rar | 大小:0.99 MB | 2019-11-05

分享资料个

  针对单幅图像超分辨率(SR)复原样本资源不足和抗噪性差的问题,提出一种基于结构自相似和形变块特征的单幅图像超分辨率算法。首先,该方法通过构建尺度模型,尽可能地扩展搜索空间,克服单幅图像超分辨率训练样本不足的缺陷;接着,通过样例块的几何形变提升了局限性的内部字典大小;最后,为了提升重建图片的抗噪性,利用组稀疏学习字典来重建图像。实验结果表明:与Bicubic、稀疏字典学习(ScSR)算法和基于卷积神经网络的超分辨率(SRCNN)等优秀字典学习算法相比,所提算法可以得到主观视觉效果更为清晰和客观评价更高的超分辨率图像,峰值信嗓比(PSNR)平均约提升了0.35dB。另外所提算法通过几何形变的方式扩展了字典规模和搜索的准确性,在算法时间消耗上平均约减少了80s。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !