针对支持向量机的参数寻优缺乏数学理论指导,传统人工蜂群算法易陷入长期停滞的不足,而混沌搜索算法具有很好的随机性和遍历性,提出了基于混沌更新策略人工蜂群支持向量机参数选择模型(IABC-SVM)。该模型利用混沌搜索对侦察蜂搜索方式进行改进,有效提高蜂群算法搜索效率。以UCI标准数据库中的数据进行数值实验,采用ACOSVM、PSOSVM、ABC-SVM作为对比模型,实验表明了IABC在SVM参数优化中的可行性和有效性,具有较高的预测准确率和较好的算法稳定性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !