针对航班保障服务时间估计的问题,考虑到航班保障服务流程的特殊性、复杂性以及影响因素的不确定性,提出了一种基于贝叶斯网络(BN)的航班保障服务时间估计模型。该模型把航空领域的专家知识与历史数据的机器学习相结合,使用贝叶斯网络的增量学习特性动态地调整BN模型,使其适应新的变化,进而不断更新航班保障服务时间的估计值。使用国内某大型枢纽机场信息系统内提取的数据,通过期望最大化(EM)方法对模型进行训练,得到了测试结果。实验结果分析与模型评价表明,所提方法能有效估计航班保障服务时间且具有较高的准确度。敏感性分析表明,航班到达时段的航班密度对航班保障服务时间影响最强。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !