×

结合神经网络的无迹卡尔曼滤波算法

消耗积分:2 | 格式:rar | 大小:0.90 MB | 2017-12-08

分享资料个

  为了实现在线估计汽车动力电池的荷电状态( sOc),提出了结合神经网络的无迹卡尔曼滤波算法。以Thevenin电路为等效电路模型,建立了状态空间表达式,采用最小二乘算法对模型参数进行辨识。在此基础上,利用神经网络算法拟合电池的荷电状态与模型各个参数之间的函数关系,经过多次实验,确定了神经网络算法的收敛曲线,此方法比传统的曲线拟合精度高。介绍了扩展卡尔曼滤波和无迹卡尔曼滤波的原理,并设计了等效电路模型验证实验、电池的SOC测试实验和算法的收敛性实验。实验结果表明,在不同的工况环境下,该方法估计SOC具有可在线估算、估算精度高和环境适应度高等优点,最大误差小于4%。最后验证了结合神经网络的无迹卡尔曼滤波的算法具有较好的收敛性和鲁棒性,可以有效解决初值估算不准确和累计误差的问题。

结合神经网络的无迹卡尔曼滤波算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !