自动情感识别是一个非常具有挑战性的课题,并且有着广泛的应用价值.本文探讨了在多文化场景下的多模态情感识别问题.我们从语音声学和面部表情等模态分别提取了不同的情感特征。包括传统的手工定制特征和基于深度学习的特征,并通过多模态融合方法结合不同的模态。比较不同单模态特征和多模态特征融合的情感识别性能.我们在CHEAVD中文多模态情感数据集和AFEW英文多模态情感数据集进行实验,通过跨文化情感识别研究,我们验证了文化因素对于情感识别的重要影响,并提出3种训练策略提高在多文化场景下情感识别的性能,包括:分文化选择模型、多文化联合训练以及基于共同情感空间的多文化联合训练,其中基于共同情感空问的多文化联合训练通过将文化影响与情感特征分离。在语音和多模态情感识别中均取得最好的识别效果.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !