针对传统的数据驱动方法偏最小二乘法( PLS)中存在的多模态数据故障检测效果不佳的问题,提出了一种新的故障检测方法——基于局部近邻标准化( LNS)的PLS( LNS-PLS)。首先,利用LNS方法对原始数据进行高斯化处理,在此基础上建立PLS的监控模型,确定T2和平方预测误差(SPE)的控制限;其次,对测试数据同样进行LNS标准化处理,再计算出测试数据的PLS监控指标来进行过程监视及故障检测,解决了PLS中无法处理多模态的问题。将所提方法应用于数值例子和青霉素生产过程,并将其测试结果与主成分分析( PCA)、K最近邻(KNN)、PLS等方法进行对比分析。实验结果表明,所提方法的故障检测效果优于PLS、KNN、PCA,该方法在分类及多模态过程故障检测方面有较高的准确性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !