×

基于粒子群优化PSO算法的部署策略

消耗积分:1 | 格式:rar | 大小:0.73 MB | 2017-12-26

分享资料个

 针对云计算基础设施即服务(IaaS)中的虚拟机部署问题,提出一种基于粒子群优化(PSO)算法的部署策略。由于PSO算法在处理虚拟机部署这类大规模复杂问题时,具有收敛速度慢且容易陷入局部最优的缺点,首先,引入多种群进化模式提高算法收敛速度,并在此基础上加入高斯学习策略避免局部最优,提出了一种多种群高斯学习粒子群优化( MCL-PSO)算法;然后,根据部署模型,使用轮询(RR)算法对MGL-PSO进行初始化,进而提出了一种以负载均衡为目标的虚拟机部署策略。通过在CloudSim中进行仿真实验,验证了在解决虚拟机部署问题时,MGL-PSO相比PSO算法,具有更快的收敛速度,并且负载不均衡度降低了13. 1%。在两种实验场景下,所提算法相比随机负载均衡(OLB)算法,其负载不均衡度分别平均降低了25%和15%;相比贪婪算法(GA),使负载不均衡度分别平均降低了l9%和7%。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !