针对静态算法对大数据和增量数据处理不足的问题,构造了基于粗决策树的动态规则提取算法,并将其应用于旋转机械故障诊断中。将粗集与决策树结合,用增量方式实现样本抽取;经过动态约简、决策树构造、规则提取与选择、匹配4个步骤的循环迭代过程,实现了数据的动态规则提取,使得提取的规则具有更高的可信度;同时,将算法应用于旋转机械故障诊断这一动态问题中,验证了算法的有效性;最后,将所提算法分别与静态算法和增量式动态算法进行了效率对比分析,实验结果表明,所提算法能够以最精简的规则获得更多数据隐含信息。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !