×

基于标注的好友推荐算法

消耗积分:1 | 格式:rar | 大小:0.71 MB | 2018-01-09

分享资料个

  目前多数社交网络主要根据已有好友关系推荐潜在好友,用户的兴趣爱好不作为主要考虑因素;此外,如何从大量数据中精确地提取用户的兴趣爱好是一项十分艰巨的任务。为此,提出一种在大量标注行为数据中精确挖掘出用户的兴趣爱好,并据此推荐具有相同兴趣爱好的潜在好友的算法——基于标注的好友推荐( FRBT)算法。首先使用词频一逆向文件频率( TF-IDF)对标签进行聚类,将语义相似的标签聚成话题;然后在话题的基础上提出一种新的相似度公式来计算用户相似度;再融合基于话题与基于物品的用户相似度,将相似度较高的用户作为潜在好友进行推荐。在Delicious数据集上以准确率和召回率为指标与item、tag和tri-graph三种算法进行比较,实验验证了该算法能够更准确地为用户推荐兴趣相似的好友。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !