针对现有完备总体经验模态分解方法在脑电去噪中的模态筛选偏差问题,结合改进的完备总体经验模态分解( ICEEMD)与近似熵,提出一种新的脑电(EEG)信号去噪方法。对EEG信号进行ICEEMD分解,得到一系列本征模态函数(IMF),再对IMF分别计算近似熵,比较并选择近似熵值最大的IMF作为去噪后的信号。基于模拟信号和真实脑电信号的实验结果表明,与添加自适应噪声的完备总体经验模态分解方法相比,该方法能得到更清晰稳定的去噪结果,并且解决了IMF盲目选取导致的去噪失准及虚假模态等问题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !