×

无人机四轴飞控姿态解算需用的一种数学方法-四元数的详细概述

消耗积分:0 | 格式:pdf | 大小:3.10 MB | 2018-10-14

ccy2018

分享资料个

  四元数是简单的超复数。 复数是由实数加上虚数单位 i 组成,其中i^2 = -1。 相似地,四元数都是由实数加上三个虚数单位 i、j、k 组成,而且它们有如下的关系: i^2 = j^2 = k^2 = -1, i^0 = j^0 = k^0 = 1 , 每个四元数都是 1、i、j 和 k 的线性组合,即是四元数一般可表示为a + bk+ cj + di,其中a、b、c 、d是实数。

  对于i、j、k本身的几何意义可以理解为一种旋转,其中i旋转代表X轴与Y轴相交平面中X轴正向向Y轴正向的旋转,j旋转代表Z轴与X轴相交平面中Z轴正向向X轴正向的旋转,k旋转代表Y轴与Z轴相交平面中Y轴正向向Z轴正向的旋转,-i、-j、-k分别代表i、j、k旋转的反向旋转。

  四元数(Quaternions)是由爱尔兰数学家哈密顿(William Rowan Hamilton,1805-1865)在1843年发明的数学概念。四元数的乘法不符合交换律(commutative law),故它似乎破坏了科学知识中一个最基本的原则。明确地说,四元数是复数的不可交换延伸。如把四元数的集合考虑成多维实数空间的话,四元数就代表着一个四维空间,相对于复数为二维空间。

  四元数是除环(除法环)的一个例子。除了没有乘法的交换律外,除法环与域是相类的。特别地,乘法的结合律仍旧存在、非零元素仍有唯一的逆元素。

  四元数形成一个在实数上的四维结合代数(事实上是除法代数),并包括复数,但不与复数组成结合代数。四元数(以及实数和复数)都只是有限维的实数结合除法代数。

  四元数的不可交换性往往导致一些令人意外的结果,例如四元数的 n-阶多项式能有多于 n 个不同的根。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !