1
2
在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!
3
4
隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。
5
书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊。 你犯了个错误,前一级确实是交流电,但后一级是交流叠加直流,三极管是需要直流偏置的,如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉,因为电感是通直流的。
6
在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。 其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路,简单理解为高频通路。
当频率较低时,无极电容因为容量较低容抗相对增大,就要用有极性的电解电容了,由于其内部加有电解液,可以把容量做得很大,让低频交流电通过,隔断直流电。 但由于内部两极中间是有机介质的,所以耐压受限,多用于低频交流通路、滤波、退耦、旁路等电路,简单理解为低频通路。
7
在放大电路中,利用耦合电容通交隔直的作用,使高频交流信号可以顺利通过电路,被一级一级地放大,而直流量被阻断在每一级的内部。
8
电容是聚集电荷的,你可把它想象成个水杯,充放电就是充放水,在充电过程中,电压是慢慢的上升的,放电反之,你只需检测电容两端电压就能实现延时。 如充电,开始时,电容两端电压为零,随着充电时间延长,电压逐渐上升到你设定的电压就能控制电路的开关。 当然,也可反过来利用放电。延时时间与电容容量、电容漏电,充电电阻,及电压有关,有时还要把负载电阻考虑进去。
9
10
对,电容是一种隔直流阻交流的电子元件.所以阻容耦合放大电路只能放大交流信号.放大直流信号用直接耦合放大电路。
11
耦合电容负极不接地,而是接下一级的输入端,旁路电容负极接地。
12
其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容,按照你输入信号的频率范围高频的可选用103、104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
13
振荡来源于闭环的相移达到180度并且此时的环路增益是大于零的,采用纯电阻网络作为反馈网络是一定不会引入相移的,所以呢全部的相移是来自于放大器的开环电路。 采用直接耦合的开环放大器在级之间是不会有电容元件引起相移的,那么能够引起相移的便是晶体管或MOS管内部的电容,这些电容都是fF,最大pF级的电容,这些电容与电路等效电阻构成的电路的谐振频率是相当高的。 所以放大器采用直接耦合,反馈网络为纯阻网络只可能产生高频振荡。
14
15
还有为电容要通过三极管的集电极来接呢,发射极为什么不可以呢?
电解电容都是在交流放大器里面工作,而交流的电流方向呈周期性变化,三极管能正常导通吗? 还有NPN型的三极管的集电极不是从C到B的吗,那它的电流是怎么通过流到下一级的三极管的基极的呢? 用电解电容做耦合的放大器,都是交流放大器,电解电容在这里作“通交隔直”用,由三极管的哪个极输出,是电路形式的问题,两者都有。
16
2、当信号源的幅度过大,在两级放大器的输出端分别会出现什么情况?
3、用手在放大器的输入端晃动,观察放大器的输出端,看是否出现了什么?原因是什么?
1、第二级放大器的输入电阻就是第一级放大器的输出电阻。
2、失真。
3、杂波,人体感应
17
在交流多级放大电路中,因个级增益及功率不同,各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!
18
电容隔直流通交流,隔直流好理解,通交流不好理解,只要理解了通交流就理解了滤波、去耦和旁路。
电容就是充放电,不错,但交流电的方向,正反向交替变化,振幅的大小也做周期性变化,整个变化的图像就是一条正弦曲线。 电容器接在交流电路中,由于交流电压的周期性变化,它也在周期性的充放电变化。线路中存在充放电电流,这种充放电电流,除相位比电压超前90度外,形状完全和电压一样,这就相当于交流通过了电容器。 和交流电通过电阻是不同,交流电通过电阻,要在电阻上消耗电能(发热),而通过电容器只是与电源做能量交换,充电时电源将能量送给电容器,放电时电容器又将电能返还给电源,所以这里的电压乘电流所产生的功率叫无功功率。
需要明确的是,电容器接在交流电路中,流动的电子(电流)并没有真正的冲过绝缘层,却在电路中产生了电流。这是因为在线路中,反向放电和正向充电是同一个方向。 而正向放电和反向充电是同一个方向,就象接力赛跑,一个团队跑完交流电的正半周,另一个团队接过接力棒继续跑完交流电的负半周。 理解了电容器通交流,那么,交流成份旁路到地,完成滤波也就可以理解了。
19
这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。
滤波电容:这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。
旁路电容:是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容:是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
20
耦合电容是传递交流信号的,接在线路中,去耦电容是将无用交流信号去除的,一段接在线路中、一端接地。
21
电容器在电路里的十八般武艺归根到底就是两个!充电荷!放电荷! 其特性就是通交流!隔直流!电容两端加上交变电压后会随电流交变频率而不断的充放电!此时电路里就有同频率的交变电流通过!这就是电容的通交特性!
在频率合适的情况下电容对电路可视为通路!前级交流输出经电容就可传至后级电路!
而对直流来说它却是隔绝的!因为两端电压充至与电路电压相等时就不会再有充电电流了!
作用于前后级交流信号的传递时就是藕合! 作用于滤除波动成份及无用交流成分时就是滤波!
22
23
电容的充电,放电,整流和滤波甚至包括它的移相,电抗等功能,都是电容的存储功能在起作用。 电容之所以能够存储电荷,是利用了正负电荷之间有较强的互相吸引的特性来实现的。 在给电容充电时,人们通过电源将正电荷引入正极板,负电荷引入到电容的负极板。 但是正负电荷又到不了一起这是因为有一层绝缘模阻隔着它们。隔模越大越薄引力也就越大。 存储的电荷也就越多。正负电荷在十个极板间是吸引住了但是如果你给它提供一个外电路它们就会能过这个外电路互相结合,也就是放电。 它们毕竟是一高一低麻。形像来说电容就像一个储水池。它可以形像地说明它的整流波波的作用。
24
其实你说的很对,它在电路中就是这么一个工作的过程,但是他跟信号的频率有关系,首先看你要把电容放在电路中用着什么,当用作滤波时,它把一定频率信号滤除到地,如芯片电源前端的电容,有的则是去耦,你说的现象就像稳压关前的滤波电容和开关电源输出的滤波电容。
关于稳压管我给你举个例子吧,假如有个5V的稳压管,当电压小与5V,电压就等与它本身的电压,当电压高于5V,稳压管就把电压稳到5V,多余的电压把稳压关击穿通道第上去了
25
耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。 退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。 耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。
退耦有三个目的:
将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断;
大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;
形成悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹。
26
不只是滤波,全部给你吧:
1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。
2.电容既不产生也不消耗能量,是储能元件。
3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。
4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡。
5.在接地线上,为什么有的也要通过电容后再接地咧?
在直流电路中是抗干扰,把干扰脉冲通过电容接地,在这次要作用是隔直——电路中的电位关系;交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用。
6.电容补尝功率因数是怎么回事? 因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度,电容电流回路中无电阻和电感元件时,叫纯电容电路。 电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流,电感电流回路中无电阻和电容时,叫纯电感电路,纯电感电路的电流滞后电压90度。 由于功率是电压乘以电流,当电压与电流不同时产生时,如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0,这样,得到的乘积(功率)也为0!这就是无功。 那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。
27
电容器的容抗随着两端加的交流电的频率不同而改变,Z=1/2*3.14*FC,根据需要滤除哪个频率的电流,设置不同的容值。 这样就可以把不需要的电流引到地,就完成了滤波,而对需要的频率的电流,电容是通路的或阻抗很小,交流电通过时,是反复充电和放电的过程。
28
例如晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件, 例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。 后来也有的资料把它引申使用于类似情况。 滤波电容就更好理解了,电容有通交流阻直流的功效,滤波就是我可以通过选择不同的滤波电容,把一定频率的交流信号滤掉,留下想要的频率信号。
29
完全不同,耦合电容是信号传递,去耦电容是减少干扰。
30
直流电路窜入交流信号或交流放大电路的自激回授,都会产生不良后果!为了阻止该交流成份逐级藕合放大,在级间设置电容使之回流入地!该电容就是退藕电容!
31
32
滤波电容在电源电路中,旁路电容在信号电路中,其实作用是基本一样的,滤波电容:将脉动的电流成份旁路或称滤除掉并起充放电作用,旁路电容:将电路中的高频或低频成份滤除或旁路掉。
33
旁路电容不是理论概念,而是一个经常使用的实用方法,电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。 例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声,数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。 0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。 1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些,每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。 最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,要使用钽电容或聚碳酸酯电容,去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。
一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去。 容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰。
旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件。
有源器件在开关时产生的高频开关噪声将沿着电源线传播,去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
从电路来说,总是存在驱动的源和被驱动的负载,如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大。 这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。
去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。 高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
34
二极管、三极管、电容,在电路中怎样起作用?
1.二极管起单向导电作用。
35
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。 当我们将低频滤波电容用于高频电路的时候,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。 因此在使用中会因电解液的频繁极化而产生较大的热量,而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
(mbbeetchina)声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !